Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

CFD Study of HCPC Turbocharged Engine

2010-10-25
2010-01-2107
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns an innovative concept to control HCCI combustion in diesel-fuelled engines. This new combustion concept is called Homogenous Charge Progressive Combustion (HCPC). HCPC is based on split-cycle principle.
Journal Article

An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine

2010-04-12
2010-01-0864
This study investigates the potential of controlling premixed charge compression ignition (PCCI) combustion strategies by varying fuel reactivity. In-cylinder fuel blending using port fuel injection of gasoline and early cycle, direct-injection of diesel fuel was used for combustion phasing control at a medium engine load of 9 bar net IMEP and was also found to be effective to prevent excessive rates of pressure rise. Parameters used in the experiments were guided from the KIVA-CHEMKIN code with a reduced primary reference fuel (PRF) mechanism including injection timings, fuel percentages, and intake valve closing (IVC) timings for dual-fuel PCCI combustion. The engine experiments were conducted with a conventional common rail injector (i.e., wide angle and large nozzle hole) and demonstrated control and versatility of dual-fuel PCCI combustion with the proper fuel blend, SOI and IVC timings.
Journal Article

Clean Diesel Combustion by Means of the HCPC Concept

2010-04-12
2010-01-1256
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns a study of an innovative concept to control HCCI combustion in diesel-fuelled engines. The concept consists in forming a pre-compressed homogeneous charge outside the cylinder and gradually admitting it into the cylinder during the combustion process.
Technical Paper

A Computational Investigation of Stepped-Bowl Piston Geometry for a Light Duty Engine Operating at Low Load

2010-04-12
2010-01-1263
The objective of this investigation is to optimize a light-duty diesel engine in order to minimize soot, NOx, carbon monoxide (CO), unburned hydrocarbon (UHC) emissions and peak pressure rise rate (PPRR) while improving fuel economy in a low oxygen environment. Variables considered are the injection timings, fractional amount of fuel per injection, half included spray angle, swirl, and stepped-bowl piston geometry. The KIVA-CHEMKIN code, a multi-dimensional computational fluid dynamics (CFD) program with detailed chemistry is used and is coupled to a multi-objective genetic algorithm (MOGA) along with an automated grid generator. The stepped-piston bowl allows more options for spray targeting and improved charge preparation. Results show that optimal combinations of the above variables exist to simultaneously reduce emissions and fuel consumption. Details of the spray targeting were found to have a major impact on the combustion process.
Technical Paper

Improving Diesel Engine Performance Using Low and High Pressure Split Injections for Single Heat Release and Two-Stage Combustion

2010-04-12
2010-01-0340
This study explores an Adaptive Injection Strategy (AIS) that employs multiple injections at both low and high pressures to reduce spray-wall impingement, control combustion phasing, and limit pressure rise rates in a Premixed Compression Ignition (PCI) engine. Previous computational studies have shown that reducing the injection pressure of early injections can prevent spray-wall impingement caused by long liquid penetration lengths. This research focuses on understanding the performance and emissions benefits of low and high pressure split injections through experimental parametric sweeps of a 0.48 L single-cylinder test engine operating at 2000 rev/min and 5.5 bar nominal IMEP. This study examines the effects of 2nd injection pressure, EGR, swirl ratio, and 1st and 2nd injection timing, for both single heat release and two-peak high temperature heat release cases. In order to investigate the AIS concept experimentally, a Variable Injection Pressure (VIP) system was developed.
Journal Article

Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending

2009-11-02
2009-01-2647
This study investigates the potential of controlling premixed charge compression ignition (PCCI and HCCI) combustion strategies by varying fuel reactivity. In-cylinder fuel blending using port fuel injection of gasoline and early cycle direct injection of diesel fuel was used for combustion phasing control at both high and low engine loads and was also effective to control the rate of pressure rise. The first part of the study used the KIVA-CHEMKIN code and a reduced primary reference fuel (PRF) mechanism to suggest optimized fuel blends and EGR combinations for HCCI operation at two engine loads (6 and 11 bar net IMEP). It was found that the minimum fuel consumption could not be achieved using either neat diesel fuel or neat gasoline alone, and that the optimal fuel reactivity required decreased with increasing load. For example, at 11 bar net IMEP, the optimum fuel blend and EGR rate for HCCI operation was found to be PRF 80 and 50%, respectively.
Journal Article

Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine

2009-04-20
2009-01-1123
The goal of this research is to investigate the physical parameters of stoichiometric operation of a diesel engine under a light load operating condition (6∼7 bar IMEP). This paper focuses on improving the fuel efficiency of stoichiometric operation, for which a fuel consumption penalty relative to standard diesel combustion was found to be 7% from a previous study. The objective is to keep NOx and soot emissions at reasonable levels such that a 3-way catalyst and DPF can be used in an aftertreatment combination to meet 2010 emissions regulation. The effects of intake conditions and the use of group-hole injector nozzles (GHN) on fuel consumption of stoichiometric diesel operation were investigated. Throttled intake conditions exhibited about a 30% fuel penalty compared to the best fuel economy case of high boost/EGR intake conditions. The higher CO emissions of throttled intake cases lead to the poor fuel economy.
Journal Article

Experiments and Modeling of Adaptive Injection Strategies (AIS) in Low Emissions Diesel Engines

2009-04-20
2009-01-0127
Homogeneous Charge Compression Ignition (HCCI) has been shown as a promising technique for simultaneous NOx and soot reduction while maintaining diesel-like efficiency. Although HCCI has been shown to yield very low emissions levels, spray-wall impingement and high pressure rise rates can be problematic due to the early injection timings necessary for certain HCCI operations. To address spray-wall impingement, an Adaptive Injection Strategy (AIS) was employed. This strategy uses multiple pulses at both low and high injection pressures to prepare an optimal in-cylinder mixture. A unique Variable Pressure Pulse (VPP) was developed to investigate the AIS concept experimentally. The VPP has the capability of delivering multiple injections at both low and high injection pressures (∼100 bar and ∼1000 bar respectively) through a single injector in the same engine cycle. Comparisons were made between model predictions and engine experiments using the VPP system.
Technical Paper

Homogeneous Charge Progressive Combustion (HCPC): CFD Study of an Innovative Diesel HCCI Concept

2009-04-20
2009-01-1344
This paper concerns a study of an innovative concept to control HCCI combustion in diesel-fueled engines. The concept consists in forming a pre-compressed homogeneous charge outside the cylinder and in gradually admitting it into the cylinder during the combustion process. This new combustion concept has been called Homogeneous Charge Progressive Combustion (HCPC). CFD analysis was conducted to understand the feasibility of the HCPC concept and to identify the parameters that control and influence this novel HCCI combustion. A CFD code with detailed kinetic chemistry (AVL FIRE) was used in the study. Results in terms of pressure, heat release rate, temperature, and emissions production are presented that demonstrate the validity of the HCPC combustion concept.
Technical Paper

Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine with Gasoline for Low Emissions

2009-04-20
2009-01-1442
A study of partially premixed combustion (PPC) with non-oxygenated 91 pump octane number1 (PON) commercially available gasoline was performed using a heavy-duty (HD) compression-ignition (CI) 2.44 l Caterpillar 3401E single-cylinder oil test engine (SCOTE). The experimental conditions selected were a net indicated mean effective pressure (IMEP) of 11.5 bar, an engine speed of 1300 rev/min, an intake temperature of 40°C with intake and exhaust pressures of 200 and 207 kPa, respectively. The baseline case for all studies presented had 0% exhaust gas recirculation (EGR), used a dual injection strategy a -137 deg ATDC pilot SOI and a -6 deg ATDC main start-of-injection (SOI) timing with a 30/70% pilot/main fuel split for a total of 5.3 kg/h fueling (equating to approximately 50% load). Combustion and emissions characteristics were explored relative to the baseline case by sweeping main and pilot SOI timings, injection split fuel percentage, intake pressure, load and EGR levels.
Technical Paper

Validation of Advanced Combustion Models Applied to Two-Stage Combustion in a Heavy Duty Diesel Engine

2009-04-20
2009-01-0714
Two advanced combustion models have been validated with the KIVA-3V Release 2 code in the context of two-stage combustion in a heavy duty diesel engine. The first model uses CHEMKIN to directly integrate chemistry in each computational cell. The second model accounts for flame propagation with the G-equation, and CHEMKIN predicts autoignition and handles chemistry ahead of and behind the flame front. A Damköhler number criterion was used in flame containing cells to characterize the local mixing status and determine whether heat release and species change should be a result of flame propagation or volumetric heat release. The purpose of this criterion is to make use of physical and chemical time scales to determine the most appropriate chemistry model, depending on the mixture composition and thermodynamic properties of the gas in each computational cell.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Journal Article

Effects of Fuel Physical Properties on Diesel Engine Combustion using Diesel and Bio-diesel Fuels

2008-04-14
2008-01-1379
A computational study using multi-dimensional CFD modeling was performed to investigate the effects of physical properties on diesel engine combustion characteristics with bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. The sensitivity of the computational results to individual physical properties is also investigated, and the results provide information about the desirable characteristics of the blended fuels. The properties considered in the study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions.
Technical Paper

Numerical Predictions of Diesel Flame Lift-off Length and Soot Distributions under Low Temperature Combustion Conditions

2008-04-14
2008-01-1331
The lift-off length plays a significant role in spray combustion as it influences the air entrainment upstream of the lift-off location and hence the soot formation. Accurate prediction of lift-off length thus becomes a prerequisite for accurate soot prediction in lifted flames. In the present study, KIVA-3v coupled with CHEMKIN, as developed at the Engine Research Center (ERC), is used as the CFD model. Experimental data from the Sandia National Labs. is used for validating the model predictions of n-heptane lift-off lengths and soot formation details in a constant volume combustion chamber. It is seen that the model predictions, in terms of lift-off length and soot mass, agree well with the experimental results for low ambient density (14.8 kg/m3) cases with different EGR rates (21% O2 - 8% O2). However, for high density cases (30 kg/m3) with different EGR rates (15% O2 - 8% O2) disagreements were found.
Technical Paper

Adaptive Injection Strategies (AIS) for Ultra-Low Emissions Diesel Engines

2008-04-14
2008-01-0058
Homogeneous Charge Compression Ignition (HCCI) combustion is being considered as a practical solution for diesel engines due to its high efficiency and low NOx and PM emissions. However, for diesel HCCI operation, there are still several problems that need to be solved. One is the spay-wall impingement issue associated with early injection, and a further problem is the extension of HCCI operation from low load to higher engine loads. In this study, a combination of Adaptive Injection Strategies (AIS) and a Two-Stage Combustion (TSC) strategy are proposed to solve the aforementioned problems. A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN-GA code, was employed in this study, where Genetic Algorithms (GA) were used to optimize heavy-duty diesel engine operating parameters. The TSC concept was applied to optimize the combustion process at high speed (1737 rev/min) and medium load (57% load).
Technical Paper

Effects of Engine Operating Parameters on near Stoichiometric Diesel Combustion Characteristics

2007-04-16
2007-01-0121
Stoichiometric combustion could enable a three-way catalyst to be used for treating NOx emissions of diesel engines, which is one of the most difficult species for diesel engines to meet future emission regulations. Previous study by Lee et al. [1] showed that diesel engines can operate with stoichiometric combustion successfully with only a minor impact on fuel consumption. Low NOx emission levels were another advantage of stoichiometric operation according to that study. In this study, the characteristics of stoichiometric diesel combustion were evaluated experimentally to improve fuel economy as well as exhaust emissions The effects of fuel injection pressure, boost pressure, swirl, intake air temperature, combustion regime (injection timing), and engine load (fuel mass injected) were assessed under stoichiometric conditions.
Technical Paper

Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine

2007-04-16
2007-01-0193
There is a significant global effort to study low temperature combustion (LTC) as a tool to achieve stringent emission standards with future light duty diesel engines. LTC utilizes high levels of dilution (i.e., EGR > 60% with <10%O2 in the intake charge) to reduce overall combustion temperatures and to lengthen ignition delay, This increased ignition delay provides time for fuel evaporation and reduces in-homogeneities in the reactant mixture, thus reducing NOx formation from local temperature spikes and soot formation from locally rich mixtures. However, as dilution is increased to the limits, HC and CO can significantly increase. Recent research suggests that CO emissions during LTC result from the incomplete combustion of under-mixed fuel and charge gas occurring after the premixed burn period [1, 2]1. The objective of the present work was to increase understanding of the HC/CO emission mechanisms in LTC at part-load.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

PCCI Investigation Using Variable Intake Valve Closing in a Heavy Duty Diesel Engine

2007-04-16
2007-01-0903
Parametric tests using various EGR amounts, boost intake pressures, fueling rates, intake valve closings (IVC), injection pressures, and start-of-injection timings were executed to explore the limitations and potential of an intake valve actuation system on a heavy-duty diesel engine. At high-speed, intermediate load (56%) operation, constant airflow and no EGR, the use of late intake valve closing enabled a 70% NOx reduction while maintaining PM levels. Through an investigation using low load operation, late IVC, and reduced intake pressure, 2010 not-to-exceed NOx and PM emissions (0.25 g/kW-hr NOx, 0.02 g/kW-hr PM) were achieved with 40% EGR. At medium load, constant air flow, and early SOI, it was found that the NOx, HC and BSFC levels at a late IVC with 30%EGR were comparable to those with the stock camshaft IVC timing of 143°BTDC with 40%EGR. In comparison, the CO and PM levels decreased by nearly 70% with the use of late IVC timing and less EGR.
Technical Paper

Premixed Compression Ignition (PCI) Combustion with Modeling-Generated Piston Bowl Geometry in a Diesel Engine

2006-04-03
2006-01-0198
Sustainable PCI combustion was achieved in a light-duty diesel engine through the installation of a 120° spray angle nozzle and modeling-generated piston bowl geometry developed for compatibility with early start-of-injection timings. Experimental studies were conducted to determine favorable settings for boost pressure, SOI timing, and EGR rate at 2000 rev/min, 5 bar BMEP. An optimal SOI timing was discovered at 43° BTDC where soot and NOx emissions were reduced 89% and 86%, respectively. A 10% increase in fuel consumption was attributed to increased HC and CO emissions as well as non-optimal combustion phasing. Combustion noise was sufficiently attenuated through the use of high EGR rates. The maximum attainable load for PCI combustion was limited by the engine's peak cylinder pressure and cylinder pressure rise rate constraints.
X